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The linearized theory of axisymmetric hypersonic source flow past a slender 
pointed body is treated by using linearized potential theory, assuming that the 
hypersonic parameter is less than unity. The governing equation in the trans- 
formed co-ordinates with the ratio of specific heats y = 1.5 shows a modified 
form relative to the equation for parallel flow, whereas that with y = 2 shows 
essentially the same form. Some numerical calculations for a cone and a cone- 
cylinder are presented, and the surface pressure distributions obtained for both 
y = 1-5 and 2 show that there is a considerable pressure-distribution difference 
between source flow and parallel flow. The pressure on a cone in hypersonic 
source flow approaches zero downstream, while, if the cone has a cylindrical 
afterbody, the pressure recovers to the free-stream value quickly. This suggests 
that the static pressure probe for supersonic parallel flow is useful also in 
source flow. 

1. Introduction 
Effects of non-parallel flow towards a body are of current interest in external 

flows, as well as in internal flows. In  practical cases of the flow past test bodies 
in hypersonic conical tunnels, or that in the central core of a free jet expanding 
into a vacuum (Ashkenas & Sherman 1966), the oncoming flow is essentially of 
source type. In  some of these cases, the flow field significantly deviates from 
that with parallel oncoming flow, so that the perturbation theory starting from 
the parallel flow results becomes inadequate. 

In  hypersonic flows, most of the important problems require nonlinear treat- 
ments. Actually, in source flows, the Newtonian approximation or its modification 
can be conveniently used to obtain pressure distributions, as shown by Hall 
(1963), etc. Gorgui (1971) used the exact equations of motion to treat cones and 
wedges by expanding flow quantities in power series in the axial distance x from 
the nose divided by the source-nose distance r,. Also, if the whole field is 
assumed to be supersonic, the method of characteristics can be applied (Krasnov 
1970). 

Furthermore, suppose the body is very slender, in the sense that the effective 
hypersonic parameter x, the product of the free-stream Mach number M,, and 
the angle E of the body surface with respect to  the free-stream direction (not the 
inclination angle of the body surface to the axial x direction), is smaller than 
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FIGURE 1. Flow geometry and co-ordinates. 

unity. Then the flow field can be assumed to be isentropic with good accuracy, 
and the supersonic potential flow theory can be applied (Hayes & Probstein 
1966; Van Dyke 1951). Further, a linearized analysis can be made if is 
significantly smaller than unity. 

The present paper treats the source flow past a very slender body with a 
linearized perturbation theory, and checks the possibility of the needle-type 
slender body for use as a static pressure probe in source flow. In  practical 
cases, the hypersonic viscous interaction may cause strong entropy variation, 
especially around the nose. However, at the rear of the body, the interaction is 
estimated to be weak, so that the potential theory can give a good approximation. 

2. Fundamental equations 
Consider an axisymmetric hypersonic source flow past a pointed body of 

revolution, as shown in figure 1. If the polar co-ordinate system (r, 8) is used, the 
basic equations of the flow are 

where 

aH V,aH v-+-- = 0, 
ar r ae 

In  the above, V,, V,, p ,  p and y denote velocity components in the radial and 
azimuthal directions, the pressure, the density and the ratio of specific heats, 
respectively. I n  the present analysis, the flow Mach number is very large 
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compared with unity, and also the body is assumed to be slender in the sense 
that the hypersonic parameter X = M0e is smaller than unity. This condition 
implies that 0 in the disturbed flow field is very small everywhere. Because the 
flow is assumed to be isentropic, there exists a velocity potential @ defined by 

Then the gas-dynamic equation is derived from (1)-(5) as 

Here, the square u2 of the local sound speed takes the form 

(y  - I )  ( H  - 40; - ir-W;),  

with H constant. As usual in small disturbance theory, @ is divided into free- 
stream and perturbation potentials $o and $1 as 

@(r, 8) = $o(r) + $i(r, 81, @F = $or+ $1r, @e = $lee (7) 

Because the body is slender, and the perturbed velocity components are small 
compared with free radial velocity, 

$or % h r ,  h e .  ( 8 )  

Then, after terms of higher order than @J(ra) (including @$/(r2u2), Or 
etc.) are neglected, ( 6 )  reduces to 

@'&./(r2cc2), 

(9) 
2 

(l-H;)$&.f+;$or = 0, 

Mo denotes the Mach number at point r in the free-source flow. Equation (9) 
gives the well-known solution for point-source flow, and Mo is given as a function 
of r. Further, when Mo > 1, Mo can be approximated by 

Mo/MN + (r/rN)y-l. (11) 

The subscript N denotes the free-stream value at the nose of the body. 
Suppose the non-dimensional variables s and w ,  defined by 

T l r N  f 8, MNe G W ,  (12) 

are used as well as the approximation (1 1). Then the linearized perturbation 
equation for 35, becomes 
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Figure 2. Region of influence of source line to point P.  

Equation (13) is rather complicated to solve, but in the special cases when y is 
equal to 1.5 or 2, i t  can be transformed to 

( 1 4 4  y = 1.5, $lcc+p = $lwo+x, $10 where 6 = 2/sk, 

(14b) 
$10 1 

y = 2, $ q g  = where 5 = -, 
S 

respectively. Equation (14 b) has the same form as the equation for the perturba- 
tion potential appearing in parallel flow past a body of revolution (Van Dyke 
1951; Liepmann & Roshko 1957). 

3. General solutions 
The solutions of (14) can be obtained by using Green functions as 

Here the unknown source distribution functions f(cl) and g(&) along the 6 and 5 
axes can be determined from the boundary condition, and the limits of integra- 
tion from physical considerations. As shown in figure 2, the part of the source 
line having influence on the point P(r, 6)  lies between N(rN, 0) and Q(rl, 0) ,  
where ,u is the Mach angle. The equation of the Mach line can be given by 

Integration of this from Q to  P gives the relation between rl and ( r ,  O ) ,  from which 
N and Q are expressed in terms of the new variables as 

y =  1.5, Q = 2 at N ,  Q = g+o at Q, 

y = 2, tl= 1 at N, t l=5+o st Q. 
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As a result, the general solutions of (14) can be expressed as 

In  order to avoid the singularity in the integrands at the lower limit of integra- 
tion, the variables gl and El are transformed into x and w, respectively, by 

7 = 1.5, C: (C2 + + 2& cash Z ,  ( 1 7 4  

Y = 2, c1 = E + w cosh w. 

Further, if F is introduced by 

then (16) can be reduced to 
.f(C1)/251 = F(C:), 

41 = I ~ h - ' [ ( l - - D / ~ I  
Y = 2, g(c + w cosh w) dw. 

The boundary condition is that the flow is tangential 
8 = B,(r), i.e. 

(&/F), = r dB,/dr. 

(19b) 

to the body surface 

This condition can be expressed in the transformed variables as 

2U r ldw, 
y = 1.5, (qjl,,,), = -"-- M% C d 5 '  

( q j  ) --+N- U r dw, 

M N  d c '  Y = 2, lo w - 

U, is the velocity at the nose of the body. 
The pressure coefficient referred to the free-stream nose pressure p N  is defined 

bY 

The perturbed pressure coefficient referred to the -free-stream pressure po is, 
within the linear approximation, expressed as 

If there is no body in the flow, the above value becomes zero, and this quantity 
can be regarded as the normalized perturbed pressure caused by the presence 
of a body. 
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FIGURE 3. Method of solution for pointed body. 

In  the transformed co-ordinates, the above reduces to 

C,, denotes the pressure coefficient for free-source flow. In  hypersonic free-source 
flow, the approximation 

&,/uN k 1, PO/PN k s-2y 

holds, from which C,, can be expressed as 

(236) 

4. Method of solution 
In  general, the solutions of (19) can be determined only numerically, and 

von Kkm&n & Moore's (1932) method is applied in the present analysis. The 
solutions are obtained by superposing a series of local solutions, in each of which 
the origin of the source distribution is chosen a t  c,, as shown in figure 3, SO that 
the solution is obtained as 

= 1.5, $1 = 2 ( h ) n  = XI Fn((c2+d) +2[wcoshz)dz, 

( 2 4 4  

(246) 

cosh-' {[q- ( 5 * + ~ ' ) ] / ( Z C @ f ~  

r L  n o  

co8h-I [(%-51/@1 
Y = 2, $1 = x ($11, = 21 g n ( l  + w cosh w) dw. 

n n O  

Cl = c, and = c, denote each position of the origin of source distributions. 



Source flow past bodies of revolution 145 

First, from the analogy with the potential for a cone in parallel flow, the source 

y = 1.5, Fn((52+w2)+2@coshz) = A , ( ~ ~ - ( ~ ~ + w ~ + 2 ~ w c o s h z ) ) ,  ( 2 5 a )  

distribution functions are assumed to be 

y = 2 ,  gn(c + w cash W )  = B,{c, - (c + w cash w)}. (25 b )  

A ,  and B, are unknown constants. In  this case, with t ,  and 1, defined by 

(26b) 
0 Jn( t ,  w ;  Cn) 
- 
C n - 6 ’  

y = 2 ,  

q5, and its derivatives can be given as 

(27a) 

(27 b)  

$,, = A,{$ - (c2 + 02)} {sech-l t, - ( 1  - ti)*}, 
(q5,& = - 2An{5sech-l t ,  + w (  1 - ti)*/tn}, 

($,,Jw = - 2An{wsech-l t ,  + 5( 1 - t i )+/ t , } ,  
$,, = B,(c, - 6 )  {sech-ll, - (1 - l:)*}, 

i ($,,JS = - B, sech-l I,, 

i = 1.5, 

r (q5ln)o = - B n ( 1 - E ) * / J n *  

y = 2, 

The unknown constants A ,  and B, are determined such that the boundary 
condition is satisfied at the point P,+,, i.e. 

= 1.5, k1 ($& - 2A,{w sech-l t ,  + 5( I - t:)+/t,}] 
i - 0  p,+1 

y =  2 ,  r?’ ($ , i )w-Bn(l-Z~)*/ ln]  = (-xN-) U r dw, . ( 2 8 b )  

i=O Pn+i Ma d6 P,+, 

In  order to begin the calculation, first a tangent cone to the body is assumed 
a t  the nose. The cone is expressed as 

w, = MN tana( I - $c2) = MN tan a( I - 6) .  (29) 

01 corresponds to the semi-vertex angle of the body at  the nose. Then, values of 
to and 1, at the nose, and also A ,  and B, are expressed explicitly as 

Using these constants, ($,), and its derivatives are calculated along t,he body 
surface. If this solution does not satisfy the boundary condition at  P2, then 
another source distribution with constant A ,  or B, is imposed from the nose with 
origin c,. These constants A ,  and B, are determined such that the boundary 

10 F L M  73 
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1 

i=O 
condition is satisfied at point P2 using relations (28) above. After C, ($& have been 

caluclated on the surface of the body, a source distribution with origin c,isimposed 
2 

i = O  
and its constant is determined from the boundary condition a t  P3. Then 2 

can be calculated on the surface. This procedure is continued until every surface 
point satisfies the boundary condition. 

If the body has a discontinuity in curvature like a cone-cylinder, the pro- 
cedure just described above gives poor accuracy behind the corner, unless the 
intervals are chosen extremely small. According to Van Dyke (1951), however, the 
corner can be effectively removed by adding, with origin a t  c,, the 'corner 
solution '. Analogously to Van Dyke's method, the source distribution functions 
a t  the corner are assumed to be 

y = 1.5, & ( c 2 + ~ 2 + 2 @ ~ ~ ~ h ~ )  = A,[c~- ( { 2 + ~ 2 + 2 { w ~ ~ ~ h ~ ) ] ~ ,  ( 3 1 ~ )  

y = 2, gc(< + w cash W) = B,[c, - ( E  + w C O S ~  w)]*. (31b) 

A, and B, are unknown constants. In the above case, $lc and its derivatives 
can be obtained as 

Here ( 3 3 4  

K and E are the complete elliptic integrals of the first and second kind, with 
modulus k. The unknown constants A,  and B, are determined from the con- 
dition that the flow is tangential to the body surface just behind the corner, i.e. 

(wJU and (w& correspond to the body shapes just ahead of and behind the 
corner, respectively. 
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5. Calculations and results for cone and cone-cylinder 
As practical examples, the source flow past a cone and a cone-cylinder are 

analysed by the present method. The equations of the body surfaces in ( 6 , ~ )  
and (6, w )  variables are expressed as follows. 

Cone, w, = MNtana(I-$c2) = MNtana(l-f) .  (35) 

MNtana( 1 - &g2) for 2 2 5 2 Q, 

MNtana(l  - f )  for 1 2 5 2 fc, 

(MNd/8rN) !? for Q 2 6 > 0, 

(MN 'lZrN) f for & 2 6 > 0. 

j (36) 

Cone-cylinder, w, = 

a is the semi-vertex angle of the cone, and d is the diameter of the cylinder, as 
shown in figure 4. 

In the case y = 2, there exists a closed-form solution for cones, which can be 
expressed as 

This stems from the formal correspondenoe of the equation to that of parallel 
flow. On the other hand, there exists no such closed-form solution for the case 
y = 1.5, because the correspondence to the parallel flow is not perfect. Therefore, 
the step-by-step superposition explained in $4 must be applied here. 

For computations, the following numerical values are used: Mach number a t  
the nose, M N  = 7.5; semi-vertex angle of the cone, a = 4'; diameter of the 
cylinder d divided by rN, d/rN = 41344 = 0.0116; hypersonic parameter at the 
nose, x = MN tan a = 0.52. It must be noted that the hypersonic parameter 2 a t  
the nose takes the maximum value for cones and cone-cylinders, which is easily 
verified from the definition. 

Cylindrical part, 

From these relations, it  is seen that, if y < 2, the hypersonic parameter X takes 
the maximum value MN tan a at s = 1 (i.e. a t  the nose), and it remains constant 
( y  = 2) or decreases (y  = 1.5) as s increases. 

10-2 
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FIGURE 4. Dimension of bodies to be calculated. 
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FIGURE 5 .  Distributions of the perturbed pressure coefficient C, - CDo. - - - , cone, 
= 1.5; _ _ _ _ _ _ _ _ _  , cone, y = 2;  -, cone-cylinder, y = 1.5; - - - - , cone-cylinder, y = 2. 

Results are shown in figures 5-7. Figure 5 shows the perturbed pressure 
coefficient C, - C,, for both the cone and the cone-cylinder against dimensionless 
distance s = r/rN.  It is well known that, if the cone is in a parallel flow, the conical 
solution shows that the surface pressure is kept constant, while the present 
figure shows that, although the surface pressure at the nose takes the same value 
as that in a parallel flow, it decreases as s increases, approaching the free-stream 
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value. Also, the figure shows that the pressure for y = 1-5 takes a value a little 
higher than that for y = 2. The term C, -Cpo gives the difference between the 
surface pressure coefficient and the free-stream one. The pressure distribution 
along the cone-cylinder shows a discontinuous pressure drop behind the corner 
point below the free-source flow value, then it approaches the free-stream value 
more quickly than the cone does. Exactly speaking, ( p - p o ) / p o  indicates the 
recovery of the surface pressure to the free-stream value. If this were very small 
compared with unity, then p could be used as an approximation to the free- 
stream pressure po. In  figure 6, ( p  -po)/po is plotted against s for the cone and 
the cone-cylinder in the present calculated cases. The figure shows that its value 
remains constant for the cone with y = 2. This comes from the relations 

- 

(2 sech-l (MN tan a)  

- 1) (1 - M k  tan2 a)* 
C, - C,, = s - ~  tan2 a , 
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FIQURE 7. Distributions of the pressure coefficient C,. (i) s = 03, y = 2; (ii) B = 00, y = 1.5. 
, cone, y = 1.5; _ _ - - _ _ - - -  , cone, y = 2;  - , cone-cylinder, y = 1.5; ----, cone- 

cylinder, y = 2. 

As is seen from (42), when y = 2, (p-po)/po in the linearized theory does not 
depend on s and keeps a constant value. For the cone with y = 1.5, (p-po)/po 
decreases slightly as s increases. On the other hand, for the cone-cylinder, the 
value of (p-po)/po behind the corner quickly approaches zero, which means 
that the surface pressurep there can be used as substitute for Po. This fact suggests 
the possibility of using the needle type cone-cylinder as a static pressure probe 
in a source flow. It should be noted that the viscous effect, especially near the 
nose of the body, will cause interaction with the outer inviscid flow, and there- 
fore the present results must be modified to include these effects. However, the 
pressure far downstream from the nose, where the interaction is weak, could be 
given by the present results with a good approximation. 

Figure 7 shows the pressure coefficient C, for both the cone and the cone- 
cylinder. As shown in figure 5, C, approaches to C,, as s increases, while C,, 
approaches - 0.0237 for y = 1.5 and - 0-0178 for y = 2. This is the reason why 
C, for y = 1-5 and 2 in figure 7 approach different limits as s increases. 
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6. Conclusion 
The theory for a slender pointed body with zero attack angle in a hypersonic 

source flow was treated by using inviscid linearized potential theory, assuming 
that the hypersonic parameter is significantly smaller than unity. The governing 
equation for hypersonic source flow with y = 1.5 shows a modified form relative 
to the equation for parallel flow in the transformed co-ordinate system, whereas 
that with y = 2 shows essentially the same form as the equation for parallel flow. 
Some numerical calculations for a cone and a cone-cylinder were presented, and 
the obtained surface pressure distributions were shown for both y = 1.5 and 2. 
The computations demonstrate that the pressure coefficient on a cone in source 
flow decreases markedly downstream and approaches the free-stream value, 
whereas in parallel flow the pressure coefficient should remain constant. The 
difference between the surface pressure on a cone-cylinder p and the free-stream 
value p, divided by p, approaches zero behind the corner, which means that the 
surface pressurep there can be used as substitute for p,. Thus, it  may be suggested 
that the static pressure probe for supersonic parallel flow is useful even in source 
flow within the first approximation, provided that the hypersonic interaction 
parameter x is significantly smaller than unity, and also that the static pressure 
hole must be located reasonably far downstream. 

The present theory is an extension of the supersonic linearized theory to 
hypersonic source flow, and it is assumed that the hypersonic parameter is 
significantly smaller than unity. In  reality, the flow is also affected by viscosity, 
which, however, is not treated here. 

The present work was partly supported by the scientific funds of the Ministry 
of Education, and some of the numerical computations were performed by 
FACOM 230-60 at the Computation Center, Nagoya University. 
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